
EFFICIENT GRADIENT-BASED ESTIMATION IN FINITE ECONOMICS’

PROBLEMS

Radoslav NEYCHEV
Ph.D. in technical sciences, Moscow institute of physics and technology

Deputy head of department of machine learning

Arman STEPANYAN
Ph.D. student at Solar Blockchain, Moscow institute of physics and technology,

Department of Machine Learning and Digital Humanities, Chief Technical Officer

Key words: Reinforcement learning, finite economics problems, Q-learning, gradient descent,

gradient-based value estimation, Bellman equation, loss function, temporal difference, outlier-

splitting method, Gauss-Newton method

Introduction In reinforcement learning, very often, we use reward functions that

are not differentiable, so optimizing these functions directly is not possible. Because of

that, we need to estimate values, which became a core problem in RL [Sutton, et al.,

2018, 1-13], [Bhatnagar, et al., 2009, 3-5]. For value estimation, we use mostly modified

temporal difference (TD) algorithms such as ESARSA [Van Seijen, et al., 2009, 177-

184] and double DQN [Van Hasselt, et al., 2015, 2-5], but they are not gradient-based

optimizing methods, so their effectivity from the convergence perspective can’t be gua-

ranteed. It is not stable for general approximation [Baird, 1995, 30-37]. This instability

was why gradient-based optimizations, such as residual gradient for MSBE and dual

gradient-TD algorithms (GTD) [Dai, et al., 2017, 1458-1467], started to evolve. Even

though these algorithms have general convergence properties, they are slower than TD-

based algorithms in tabular and linear approximation cases [Ghiassian, et al., 2020,

3524-3534].

In this article, we analyze gradient-based algorithms’ computational complexity by

considering the landscape of MSBE. After we prove theoretically that MSBE is ill-

conditioned. This result provides insight into why gradient-based value estimation is

slowly converging. On the other hand, Gauss-Newton methods are invariant to the

conditioning of loss. We can’t use them directly because these methods require inversing

matrix (it is computationally hard). We need to provide a linear approximation algorithm

called approximate residual Gauss-Newton (RAN). It uses trace to find the proper di-

rection and updates weights along the trace direction. RAN has a problem with double

sampling, and because of that, it can be used only in deterministic environments. To

properly resolve this problem, we propose RAN extensions which are GTD-based. Our

method out-performs residual gradient and GTD having the same computational

complexity. Then we analyze the situation of large outliers with essential information in

gradients of MSBE. For that, we use one more additional block to RAN of outlier-

ALTERNATIVE quarterly academic journal

57

splitting (RANS). Conducted experiment on a finite economics environment shows that

RANS signify-cantly improves RG and competes with TD-based algorithms.

Methodology We define Markov Decision Process (MDP) as a tuple <

𝑆, 𝐴, 𝑅, 𝑝, 𝛾 >, where 𝑆 and 𝐴 are finite sets for states and actions correspondingly, 𝑅 is a

set of rewards (may be continuous), 𝑝: 𝑆 𝑥 𝐴 𝑥 𝑆 𝑥 𝑅 → [0, 1] probability distribution

function given as probability of next state if we take an action with some immediate

reward from previous state, and 𝛾 is a discount factor used to calculate the discounted

sum of rewards. Then we define Q-function (action-value function) as 𝑞𝜋: 𝑆 𝑥 𝐴 → 𝑅 is

expected discounted sum of rewards from current state 𝑠 acting 𝑎. Value function is

defining as 𝑣𝜋 ∶ 𝑆 → 𝑅 and 𝑣𝜋 = 𝐸𝑎~𝜋(∗|𝑠)[𝑞𝑝𝑖(𝑠, 𝑎)]. Mostly in production cases, we

try to get a parametric estimation on Q-functions through some parameter-dependent (𝑑

dimensional vector 𝑤) function 𝑞𝑤 ∶ 𝑆 𝑥 𝐴 → 𝑅. Based on all these definitions we can

define Bellman residual 𝛿𝑤 ∶ 𝑆 𝑥 𝐴 → 𝑅 calculated as:

𝛿𝑤(𝑠, 𝑎) = 𝐸𝑠′,𝑎′,𝑟~𝑝𝜋(∗,∗,∗|𝑠,𝑎)[𝑟 + 𝛾𝑞𝑤(𝑠′, 𝑎′) − 𝑞𝑤(𝑠, 𝑎)]

According to Bellman equations 𝑞𝑤 = 𝑞𝜋 <-> 𝛿𝑤(𝑠, 𝑎) = 0 for any (𝑠, 𝑎) ∈ 𝑆 𝑥 𝐴.

So, if we have some distribution 𝐷 over states and actions, MSBE in this case can be

defined as proxy to estimate quality of 𝑤:

𝑀𝑆𝐵𝐸𝐷(𝑤) = 𝐸(𝑠,𝑎)~𝐷[𝛿𝑤(𝑠, 𝑎)2]

If the distribution is online, then we just write 𝑀𝑆𝐵𝐸(∗). If instead of paramet-

rized Q-function, we use value function 𝑣𝑤: 𝑆 → 𝑅 then:

𝑀𝑆𝐵𝐸𝐷
𝑉(𝑤) = 𝐸𝑠~𝐷[𝛿𝑤(𝑠)2]

Where 𝐷 is distribution over the states, and 𝛿𝑤(𝑠) = 𝐸𝑎~𝜋(∗|𝑠)[𝛿𝑤(𝑠, 𝑎)].

Gradient-based value estimation is done through minimizing MSBE by gradient

optimization. If during timestamp 𝑡 two independent transitions are required, we call it

double sampling. RAN algorithm iteratively updates 3 values:

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑞𝑤(𝑆𝑡+1, 𝐴𝑡+1) − 𝑞𝑤(𝑆𝑡 , 𝐴𝑡)

𝛿𝑡
′ = 𝑅𝑡

′ + 𝛾𝑞𝑤(𝑆𝑡+1
′ , 𝐴𝑡+1

′) − 𝑞𝑤(𝑆𝑡 , 𝐴𝑡)

𝑤 = 𝑤 − 𝛼𝛿𝑡
′∇w𝛿𝑡

Where 𝑤𝑡 = 𝑤. Apart from that, we also update Gauss-Newton directions.

MBSE Loss Illness: Condition-number of symmetric square matrix 𝐻 is defined

as:

𝐶(𝐻) =

max
𝑥:||𝑥||=1

|𝑥𝑇𝐻𝑥|

min
𝑦:||𝑦||=1

|𝑦𝑇𝐻𝑦|

In other words, it is the ratio of largest and lowest singular values. After that we

define condition number for quadratic function 𝑓(𝑥) = 𝑥𝑇𝐻𝑥.

𝐶(𝑓) = 𝐶(𝐻)

ALTERNATIVE quarterly academic journal

58

Where 𝐻 is hessian matrix of function 𝑓. We consider linear approximation case,

and because MSBE is a quadratic function, then it has a condition number as well

denoted 𝐶.

Theorem: a) For any Markov decision process and with any policy, the following

takes place:

𝐶 ≥
(1 − 𝛾ℎ)2

4
𝑚𝑖𝑛 (

𝑙2

𝛾2
,

1

(1 − 𝛾)2
)

b) For any ≥ 1 , there exists a policy and 𝑛 state Markov decision process such

as:

𝐶 ≥
𝛾4𝑛2

(1 − 𝛾)2

Proof: Part b is proved in [Zhang, et al., 2020, P. 1611-1619], so we will prove

only part a. Let’s note that fixed policy gets to Markov process with termination point.

We consider having a Markov chain with 𝑛 non-terminal states, let 𝑃 be associated

transition matrix. Let

𝐴 = (𝐼 − 𝛾𝑃)𝑇(𝐼 − 𝛾𝑃)

If we take tabular approximation and uniform state distribution 𝐷, we have:

𝑀𝑆𝐵𝐸𝑉(𝑤) =
𝑤𝑇𝐴𝑤

𝑛

We denote largest and smallest eigenvalues of 𝐴 as 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛. It follows that

𝐶 =
𝜆

𝜆𝑚𝑖𝑛

We estimate from above 𝜆𝑚𝑎𝑥 and from below 𝜆𝑚𝑖𝑛. Let’s denote 𝑙𝑖 the expected

number of steps until termination for state 𝑖. In that case it is obvious that

𝑙𝑖 = 1 + ∑ 𝑃𝑖𝑗𝑙𝑗

𝑛

𝑗=1

Let’s make a vector from these expected numbers and denote as 𝑙 = [𝑙1, … , 𝑙𝑛]𝑇,

then we can rewrite our expectation formula:

𝑙 = 1 + 𝑃𝑙

Where 1 = [1, … ,1]𝑇. From above, we get:

(1 − 𝛾𝑃)𝑙 = 𝑙 − 𝛾𝑃𝑙 = 𝑙 − 𝛾(𝑙 − 1) = (1 − 𝛾)𝑙 + 𝛾 ∗ 1

Let 𝑙 =
𝑙1+⋯.+𝑙𝑛

𝑛
 as mean of {𝑙𝑖}𝑖=1

𝑛 . From Cauchy-Schwarz inequality we get:

||𝑙2||

𝑛
=

1

𝑛
∑ 𝑙𝑖

2 ≥ (
1

𝑛
∑ 𝑙𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

= 𝑙2

Let’s estimate largest eigenvalue firstly:

ALTERNATIVE quarterly academic journal

59

𝜆𝑚𝑎𝑥 ≥
1

𝑛
𝑡𝑟𝑎𝑐𝑒(𝐴) =

1

𝑛
∑ 𝐴𝑖𝑖

𝑛

𝑖

=
1

𝑛
∑ (𝐼𝑗𝑖 − 𝛾𝑃𝑗𝑖)

2
=

1

𝑛

𝑖=𝑛,𝑗=𝑛

𝑖=1,𝑗=1

∑ ((1 − 𝛾𝑃𝑖𝑖)2 + ∑ 𝛾2𝑃𝑗𝑖
2

𝑗≠𝑖

)

𝑛

𝑖=1

≥
1

𝑛
∑(1 − 𝛾𝑃𝑖𝑖)2

𝑛

𝑖=1

≥ (
1

𝑛
∑ 1 = 𝛾𝑃𝑖𝑖

𝑛

𝑖=1

)

2

= (1 −
𝛾

𝑛
∑ 𝑃𝑖𝑖

𝑛

𝑖=𝑞

)

2

= (1 − 𝛾ℎ)2

For the smallest one we get:

𝜆𝑚𝑖𝑛 ≤
𝑙𝑇𝐴𝑙

||𝑙||
2 =

||(𝐼 − 𝛾𝑃)𝑙||
2

||𝑙||
2 =

||(1 − 𝑔𝑎𝑚𝑚𝑎)𝑙 + 𝛾 ∗ 1||
2

||𝑙|2

=
(𝐼 − 𝛾)2||𝑙||2 + 2𝛾(1 − 𝛾)1𝑇𝑙 + 𝛾2𝑛

||𝑙||
2

= (𝐼 − 𝛾)2 +
2𝛾(1 − 𝛾)𝑛𝑙 + 𝛾2𝑛

||𝑙||
2 ≤ (𝐼 − 𝛾)2 +

2𝛾(1 − 𝛾)𝑙 + 𝛾2

𝑙2

= (𝐼 − 𝛾 +
𝛾

𝑙
)

2

So, connecting these 2 estimations together we can write down:

𝐶 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
≥

(1 − 𝛾ℎ)2

(1 − 𝛾 + 𝛾 𝑙⁄)2
≥

(1 − 𝛾ℎ)2

2(1 − 𝛾)2 + 2𝛾2 𝑙2⁄
≥

(1 − 𝛾ℎ)2

4
min (

𝑙2

𝛾2
,

1

(1 − 𝛾)2
)

Which completes the proof of point a.

This theorem implies slow convergence of MSE gradient optimization methods.

For example, if we set the following parameters for our MDP 𝛾 = 0.99, 𝑙𝑚𝑖𝑛 =

100, 𝑝 = 0.1, then from point 𝑎, we get that 𝐶 > 2000.

Double Sampling Freedom: In RAN algorithm, we need double sampling, but

such a requirement is possible only in theoretically created environments, because 2

sequential states are very likely dependent [Dabney, et al., 2014, 3-6]. To solve this

issue, we use parametrization for 2 sequential samples, so the only difference compared

RAN is one more additional parameter added and a separate update of that parameter.

Outlier Sampling: RAN also has a problem with rare samples with big gradients

and it can’t be clipped [Zhang, et al., 2019, 3-9] because of the information contained in

them. Let’s consider the idea of how we can do that. Let’s note a task of minimization of

𝑓1 + ⋯ + 𝑓𝑛 for smooth functions {𝑓𝑖}𝑖
𝑛 and 𝑓𝑗 -s gradient is 𝑘 times larger than the gra-

dient of norms of other functions for some 𝑘 > 1 . Instead of optimizing sum of

ALTERNATIVE quarterly academic journal

60

functions we optimize
𝑓1

𝑘
+ ⋯ +

𝑓1

𝑘
+ 𝑓2 + ⋯ + 𝑓𝑛 random based. The first updates are

getting rid of outliers, while latter ones are equivalent to updating initial sum. Let’s set

outlier sampling probability as 𝜎 (will be used later as a hyperparameter).

RANS: Final algorithm is a combination of RAN, double sampling freedom, and

outlier splitting. To update Gauss-Newton directions more effectively, we insert adaptive

step-size 𝛽 using the algorithm from [Kochenderfer, et al., 2019, 95-99]. Let’s denote a

trace vector 𝑣𝑡 of (∇𝛿𝑡)2. Here is the update rule:

𝑣𝑡 = 𝜆′𝑣𝑡−1 + (1 − 𝜆′)(∇𝛿𝑡)2

We set 𝜂 ∈ (0,1) and

𝜖𝑡 =<
1

√𝑣𝑡

∗ ∇𝛿𝑡 , ∇𝛿𝑡 >

Where ∗ is entrywise product, <> - inner product. After we compute trace 𝜙 and

𝑘 the following way: 𝜙𝑡+1 = 𝜆′𝜙𝑡 + (1 − 𝜆′)𝜖𝑡 and 𝑘 = ⌊𝜖𝑡 𝜌𝜙𝑡⁄ ⌋ + 1. Step size is set:

𝛽𝑡 =
𝜂

𝜌𝜙𝑡

1

√𝑣𝑡

Let’s show that RANS prevents problems that RAN has. Let actions space consist

of one element 𝐴 = {𝑎}. When we approximate functions, 2 successive states

({𝑆𝑡, 𝑆𝑡+1}) often doesn’t differ a lot from the representation standpoint, consequently

their gradients of Q function are close to each other, which implies

Δ𝛿𝑡 = 𝛾Δ𝑞𝑤(𝑆𝑡+1, 𝑎) − Δ𝑞𝑤(𝑆𝑡, 𝑎)~0

The problem here is not in the fact that Δ𝛿𝑡 is small. If it was small for all the

consecutive states, then we could easily solve the problem by using a step-size scheduler

and constantly increasing it (that action should happen slowly as a smooth function). The

problem appears when the next state is terminal and in that case that state will be far

from its previous state. Despite the fact that mostly such scenarios happen with a low

probability, we risk to lose too much information. The updating rule in RAN has a

momentum and correction terms (corrects direction to Gauss-Newton). In an outlier

case, correction term gets too large, which means that direction change to Gauss-Newton

happens much faster than it should have been. As a result, tracking that direction

becomes challenging. As long as, we have defined updating 𝛽𝑡, we have

1

𝑘
< 𝛽𝑡 ∗ Δ𝛿𝑡 , Δ𝛿𝑡 > =

1

𝑘

𝜂

𝜌𝜙𝑡
<

1

√𝑣𝑡

∗ Δ𝛿𝑡 , Δ𝛿𝑡 > ≤
𝜌𝜙𝑡

𝜖𝑡

𝜂

𝜌𝜙𝑡
<

1

√𝑣𝑡

∗ Δ𝛿𝑡 , Δ𝛿𝑡 > = 𝜂

From there we get that

|
1

𝑘
< 𝛽𝑡 ∗ (Δ𝛿𝑡

𝑇𝑚)Δ𝛿𝑡, Δ𝛿𝑡 >| ≤ 𝜂|Δ𝛿𝑡
𝑇𝑚|

Consequently, outlier sampling problem doesn’t occur in RANS.

ALTERNATIVE quarterly academic journal

61

Figure 1. Performance of models on economical decision-making task CartPole, where

Q-values are learnt

Literature review MSBE illness and the challenges that appeared with it were a

complex challenge to solve. In the work [Wang, et al., 2021, 3-6] poor conditions related

to MSBE were examined in detail. Their research was concentrated on Markov chains

with a fixed length. In their work, it was found out that condition-number of chains

increases quadratically to the length of that chain. Second important finding was that

there is one more dependence and it is reverse quadratic related to 𝛾. These findings pro-

vide a clear understanding of current problems with the corner cases.

Gradient-based value estimation methods are powerful, but they lack computation-

nal efficiency. For details, one can refer to Baird’s article, where it is revealed that each

update of RG method is an update of 2 components. First one is called TD component

and is responsible for keeping a right direction during the optimization and wrong

direction component. Here the main idea was to reduce second components’ influence.

The experiments have shown that the strategy clearly works on early epochs of training

but after gaining a certain momentum, it is not effective at all.

The open question on how to get an adequate gradient value estimation had other

alternatives proposed. For example, Gauss-Newton method was in [Gottwald et al.,

2022, 1-5]. This development wouldn’t have been done if Newton’s method wasn’t stu-

died in [Sun, et al., 2015, 3-7], where authors discussed minimization problem of MSBE

and solving it through Newton method.

Natural gradient-based methods for value estimations were presented in [Kakade,

2001, 1-3], where the author proposed a method to solve basic problems without comp-

lex data. Along with them a similar architecture to RAN was proposed. The model was

similar from the algorithmic perspective to RAN but was 2 times larger than the original

ALTERNATIVE quarterly academic journal

62

RAN. In both articles the outlier sampling problem wasn’t considered as a serious one

and as an implication – wasn’t solved.

To solve the problem with outliers, there were numerous tries. The most popular

of them are [Karampatziakis, et al., 2010, 3-6] and [Tian, et al., 2019, 64-76], where step

scheduling was proposed to decrease the effect of outliers. With outliers, there is a

higher chance that we got a bigger direction change, so fixing of it will take longer

rather than without outliers (which means that next state is not terminal and the gradient

values’ difference is not too big).

Scientific novelty Compared to previous works related to gradient-based value

estimations, mostly all the challenges have unpleasant corner cases, which can’t be

handled through provided methods in real cases. Benchmark solutions like RAN

effectively give value estimation in theoretical cases, when the data is not noisy and is

consistent, which in production tasks never happens. That is the main reason why TD is

still commonly used as an easy alternative to complex gradient-estimation approaches,

because it behaves well on noisy data. This research shows that not all the complex

methods have problems with corner cases, it theoretically proves how double and outlier

sampling can be included in the common value-estimation solution, without making the

method more complex. The newly provided gradient-based value estimation method –

RANS gives an alternative to TD, which was one and only baseline for noisy and

inconsistent data. It works faster than TD and convergence happens smoother.

Not only as a new method but also as a new way of considering both gradient-

value and value estimations, RANS provides a way to improve already existing

algorithms that work on unbiased, less noisy data. Overall, RANS is not only a new

gradient-value estimation algorithm, but a new way of generalization of solutions with

outlier sampling cases.

Analysis After analyzing previously developed methods and showing how RANS

is better compared to its competitors, we will experimentally show the results that we

have proven above. As baseline comparison methods we are going to take TD and RG.

RG is not able to handle outlier sampling problem but provides good results otherwise.

TD is faster, with worse quality but handles outlier sampling.

RANS has the following tuple of hyperparameters < 𝛼, 𝜂, 𝜌, 𝜆, 𝜆′, 𝜎 >. We set for

experiment the following values as default without effecting performance: 𝜂 = 0.2,

𝜌 = 1.2, 𝜆 = 0.999,

ALTERNATIVE quarterly academic journal

63

Figure 2. Performance of models on economical decision-making task CartPole, where

average of expected Q-values are learnt

𝜆′ = 0.9999, 𝜎 = 0.02. So, the only hyperparameter to optimize is 𝛼 like TD and

RG algorithms. Computational complexity in one iteration in the worst case is 2 times

more than TD and RG.

Next step is formally defining the environment. Here, we are going to use a finite

economic game “CartPole”, which has the same naming as the balance game. The game

itself can be considered as a benchmark to test the quality of RL-based models, especial-

ly in cases where the algorithm is not complex and doesn’t need a lot of data to feed. In

finite economy case, we have 2 types of states – stable and unstable. There are 2 types of

instabilities, called negative and positive. The distinction between these two from task’s

goal perspective doesn’t change, but for the understanding, we need to mention that

there is a big difference on how economics can become unstable and based on type

scores are different.

The player has a finite set of actions. There are three choices that in each state can

be taken. First action pushes economy to the negative side of instability second action

pushes the economy to positive side of it. Third action is more passive than previous 2

and it is designed to be more inactive and mostly causes not a dramatic move of

economy stability score to neither one nor other direction. Fortunately, if the next state is

terminal, then dramatic move may happen even in case of third type of action. It is

logical because sometimes doing nothing to your economy can make situations worse or

better.

The objective of this environment is not just about reacting to the current policy. It

is created as a new RL task, where the model should find an optimal policy – sequence

of actions, which gives the economy stability for some amount of time. If there are state

changes with a low probability that may cause outlier sampling, this environment fully

ALTERNATIVE quarterly academic journal

64

matches the case to use RANS and make sure that theoretical results have experimental

confirmation too.

First experiment is taken on a basic economics task with discrete environment

[Charpentier, et al., 2020, 29-34]. We remind that the goal is to keep the economy stable

between negative and positive instability during 𝑘 consecutive steps. The final model is

a neural network with 128 hidden units and Leaky-ReLU for actions distribution and

Sigmoid for Q-function distribution. Results can be viewed in figure 1. where we

compare our algorithm with TD and RG using Adam optimizer.

For the second experiment we used a multi-layer network with 256 hidden Leaky-

ReLU activations, so we can learn action-values (AV). Actions are being chosen using

sigmoid distribution on AV. The network for Q function is being trained by three

algorithms, as the first one: TD, RG and RANS. Basic RANS has an advantage over its

basic competitors because of adaptive step size updating, and because of that we are

using TD and RG with Adam optimizer.

For each of the experiments we performed 200 randomly generated data samples

with random seeds. We are estimating expected values of Q function, so we took an

average of 200 environment simulations each 400 steps. The results can be viewed in

Figure 2, where an average of expected returns on random samples is plotted.

There is a need to mention separately that once the algorithm achieves a score of

400 and stabilizes, the following happens. Once the algorithm reaches a certain

equilibrium it starts to forget actions that were making summary reward higher. The

absence of failures during some period causes the model to have catastrophic forgetting

problem.

To solve of this problem, during the experiment the following strategy was used.

Recognizing the fact that with specific scenarios that causes random samples, the

environment won’t be able to pass enough information to the model, which will cause it

to have abovementioned problem. For that reason, 60 worst average return scenarios are

dropped off. This helps the algorithm to concentrate on a certain set of challenges,

preventing the rest from affecting the performance of the model.

To eliminate catastrophic forgetting at least partly, we used a replay buffer. It

serves as a memory reserve, where we store previous replay experiences which allows us

to revisit them later. It is a way to force the model to learn from previous experience

which allows to overcome catastrophic forgetting. Anyway, to overcome this problem

fully, we need to use updates through batches, which allows us to replay the algorithm

with multiple sessions at the same time.

ALTERNATIVE quarterly academic journal

65

Ideal way of excluding catastrophic forgetting in case of big size of configuration

space we need to increase replay buffer size significantly, because it will ensure more

extensive range of experiences stored.

For both experiments there is a specific list of parameters that were used to ensure

that the model is consistent and generalizable for any randomly generated finite en-

vironments. The choice of parameters is done through Grid Search on a set of parame-

ters with size 2000, running them for small number of randomly generated environ-

ments, and getting the best results from that set. For each of below 3 algorithms the pro-

cess is being repeated and as a result here are the parameters with their values that each

algorithm uses as an optimal:

 For TD, sigmoid coefficient 0.01 with Adam optimizer with step-size 0.3 was

used.

 For RG, sigmoid coefficient 0.005 with Adam optimizer with step-size 0.3 was

used.

 For RANS, sigmoid coefficient 2, 𝛼 = 0.001, and the rest of the parameters were

set to default.

Above experiments with set parameters show that RANS overperforms from the

quality perspective both TD and RG algorithms, and from the speed perspective it is

better than RG. On the other hand, it is slower than TD because each iteration RANS has

adaptive step-size updating rule, which isn’t included in TD but on the other hand,

RANS handles outlier cases with higher accuracy, and the model doesn’t lose its consis-

tence if probability of outlier samplings increases.

As a further analysis for future works, we haven’t covered off-policy cases,

showing how RANS work experimentally only on-policy way. Of course, it can be

easily transferred from on-policy to off-policy applying any importance sampling me-

thod. Also, there is a direction to test this method on an environment, which configure-

tion set’s power is continuous and compare RANS to other baseline algorithms as well

as applying unbiased gradient estimate instead of biased one. On continuous environ-

ments it would be also interesting to prove alike theoretical results as we did here to

apply the same methods here and exclude corner cases and make the models for any

types of environments (consequently, continuous economics problems) stable.

Conclusion In this article we explained the most common challenges that MSBE’s

gradient-based value estimations have. The main issue that was identified was the slow

convergence. We theoretically explained why gradient-based value estimations for

MSBE currently are slowly converging: double sampling and outlier sampling. Both

problems cause inconsistency during the estimation process and add noise to it. Because

of that overall efficiency of method becomes not competitive.

ALTERNATIVE quarterly academic journal

66

To fix that, we considered RAN algorithm, which provides robustness in many

common cases. After that, we considered solutions for both double and outlier samplings

and combined them with RAN getting more advanced algorithm called RANS. It inc-

ludes RAN and corner case solutions lowering the noise and inconsistence for both prob-

lematic samplings. Theoretically we proved that RANS is improving overall conver-

gence and solved problems of double sampling and outlier sampling.

Further taken experiments with RANS, particularly on an economical problem

with a finite number of states and 3 decisions’ environment has shown that it improved

previous baseline algorithms like RG and TD. Compared to TD, RANS has shown com-

petitive results, showing a potential to be used in certain scenarios, where the generated

samples include a lot of noise.

This research provides a new way of looking at challenges in gradient-based

estimations, where a smart combination of corner cases and ordinary solutions can give a

significant enhancements and RANS as a perfect example, provides promising results

for the future research and applications in finite decision-making environments.

References

1. Sutton R.S., Barto A.G., Reinforcement learning: An introduction, MIT Press, P. 1-

13, 2018.

2. Bhatnagar S., Sutton R.S., Ghavamzadeh M., Lee M., Natural actor-critic

algorithms, Automatica, P. 3-5, 2009.

3. Van Seijen H., Van Hasselt H., Whiteson S., Wiering M., A theoretical and

empirical analysis of expected Sarsa, IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, P. 177-184, 2009.

4. Van Hasselt H., Guez A., Silver D., Deep Reinforcement Learning with Double Q-

learning, Association for the Advancement of Artificial Intelligence, P. 2-5, 2015.

5. Baird L., Residual algorithms: Reinforcement learning with function

approximation., Proceedings of the International Conference on Machine Learning, P.

30-37, 1995.

6. Dai B., He N., Pan Y., Boots B., Song L., Learning from conditional distributions

via dual embeddings, In Proceedings of the International Conference on Artificial

Intelligence and Statistics, P. 1458-1467, 2017.

7. Ghiassian S., Patterson A., Garg S., Gupta D., White A., White M., Gradient

temporal-difference learning with regularized corrections, In Proceedings of the

International Conference on Machine Learning, P. 3524-3534, 2020.

8. Zhang S., Boehmer W., Whiteson S., Deep residual reinforcement learning,

Proceedings of the 19
th
 International Conference on Autonomous Agents and Multiagent

systems, P. 1611-1619, 2020.

9. Dabney W., Thomas P., Natural temporal difference learning, Proceedings of the

AAAI Conference on Artificial Intelligence, V. 28, P. 3-6, 2014.

ALTERNATIVE quarterly academic journal

67

10. Zhang J, He T., Sra S., Jadbabaie A., why gradient clipping accelerates training: A

theoretical justification for adaptivity, arXiv preprint, P. 3-9, 2019.

11. Kochenderfer M. J., Wheeler T. A., Algorithms for optimization, MIT Press, P. 95-

99, 2019.

12. Wang. Z.T., Ueda M., A convergent and efficient deep Q network algorithm, arXiv

preprint, P. 3-6, 2021.

13. Gottwald M., Shen H., On the compatibility of multistep lookahead and hessian

approximation for neural residual gradient. In Proceedings of the Multi-disciplinary

Conference on Reinforcement Learning and Decision Making, P. 1-5, 2022.

14. Sun W., Bagnell J. A., Online bellman residual algorithms with predictive error

guarantees, P. 3-7, 2015.

15. Kakade S. M., A natural policy gradient, In Advances in Neural Information

Processing Systems, volume 14, P. 1-3, 2001.

16. Karampatziakis N., Langford J., Online importance weight aware updates, arXiv

preprint, P. 3-6, 2010.

17. Tian T., Sutton R., Extending sliding-step importance weighting from supervised

learning to reinforcement learning, In Proceedings of the International Joint Conference

on Artificial Intelligence, P. 64-76, Springer, 2019.

18. Charpentier A., Romuald E., Remlinger C., Reinforcement Learning in Economics

and Finance, arXiv preprint, P. 29-34, 2020.

Radoslav NEYCHEV, Arman STEPANYAN

Efficient gradient-based estimation in finite economics’ problems
Key words: reinforcement learning, finite economics problems, Q-learning, gradient descent,

gradient-based value estimation, Bellman equation, loss function, temporal difference, outlier-

splitting method, Gauss-Newton method

Gradient-based methods (GBMs) for estimating values have stability properties, but the

temporal difference (TD) and its modifications’ learning methods are much faster in re-

inforcement learning (RL). We prove a theorem stating the cause of GBMs being slow

and show that the mean square of Bellman error (MSBE) is a not appropriate loss func-

tion if its second derivative matrix has a significant determinant. To resolve the problem

with MSBE on GBMs we propose residual approximate Gauss-Newton with an outlier-

splitting method (RANS). This method adds outlier-spitting on gradient methods and

learning adapter ideas to residual gradient methods making them more stable from the

estimation perspective. We show that it is faster than its residual competitors having the

same computation time and competing with TD on the baseline problem of economics

(CartPole) in RL that we tested. Further analysis and future contributions are considered

to make the result of these methods better on any types of economics, which can be built

as a finite set of state-action pairs. After proving that claim, GBMs can be used as a

baseline in any types of RL-based problems including finite economics problems.

