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Introduction In reinforcement learning, very often, we use reward functions that 

are not differentiable, so optimizing these functions directly is not possible. Because of 

that, we need to estimate values, which became a core problem in RL [Sutton, et al., 

2018, 1-13], [Bhatnagar, et al., 2009, 3-5]. For value estimation, we use mostly modified 

temporal difference (TD) algorithms such as ESARSA [Van Seijen, et al., 2009, 177-

184] and double DQN [Van Hasselt, et al., 2015, 2-5], but they are not gradient-based 

optimizing methods, so their effectivity from the convergence perspective can’t be gua-

ranteed. It is not stable for general approximation [Baird, 1995, 30-37]. This instability 

was why gradient-based optimizations, such as residual gradient for MSBE and dual 

gradient-TD algorithms (GTD) [Dai, et al., 2017, 1458-1467], started to evolve. Even 

though these algorithms have general convergence properties, they are slower than TD-

based algorithms in tabular and linear approximation cases [Ghiassian, et al., 2020, 

3524-3534]. 

In this article, we analyze gradient-based algorithms’ computational complexity by 

considering the landscape of MSBE. After we prove theoretically that MSBE is ill-

conditioned. This result provides insight into why gradient-based value estimation is 

slowly converging. On the other hand, Gauss-Newton methods are invariant to the 

conditioning of loss. We can’t use them directly because these methods require inversing 

matrix (it is computationally hard). We need to provide a linear approximation algorithm 

called approximate residual Gauss-Newton (RAN). It uses trace to find the proper di-

rection and updates weights along the trace direction. RAN has a problem with double 

sampling, and because of that, it can be used only in deterministic environments. To 

properly resolve this problem, we propose RAN extensions which are GTD-based. Our 

method out-performs residual gradient and GTD having the same computational 

complexity. Then we analyze the situation of large outliers with essential information in 

gradients of MSBE. For that, we use one more additional block to RAN of outlier-
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splitting (RANS). Conducted experiment on a finite economics environment shows that 

RANS signify-cantly improves RG and competes with TD-based algorithms. 

Methodology We define Markov Decision Process (MDP) as a tuple <

𝑆, 𝐴, 𝑅, 𝑝, 𝛾 >, where 𝑆 and 𝐴 are finite sets for states and actions correspondingly, 𝑅 is a 

set of rewards (may be continuous), 𝑝: 𝑆 𝑥 𝐴 𝑥 𝑆 𝑥 𝑅 → [0, 1] probability distribution 

function given as probability of next state if we take an action with some immediate 

reward from previous state, and 𝛾 is a discount factor used to calculate the discounted 

sum of rewards. Then we define Q-function (action-value function) as 𝑞𝜋: 𝑆 𝑥 𝐴 → 𝑅 is 

expected discounted sum of rewards from current state 𝑠 acting 𝑎. Value function is 

defining as 𝑣𝜋 ∶ 𝑆 → 𝑅  and 𝑣𝜋 = 𝐸𝑎~𝜋(∗|𝑠)[𝑞𝑝𝑖(𝑠, 𝑎)]. Mostly in production cases, we 

try to get a parametric estimation on Q-functions through some parameter-dependent (𝑑 

dimensional vector 𝑤) function 𝑞𝑤 ∶ 𝑆 𝑥 𝐴 → 𝑅. Based on all these definitions we can 

define Bellman residual 𝛿𝑤 ∶ 𝑆 𝑥 𝐴 → 𝑅  calculated as: 

𝛿𝑤(𝑠, 𝑎) = 𝐸𝑠′,𝑎′,𝑟~𝑝𝜋(∗,∗,∗|𝑠,𝑎)[𝑟 + 𝛾𝑞𝑤(𝑠′, 𝑎′) − 𝑞𝑤(𝑠, 𝑎)] 

According to Bellman equations 𝑞𝑤 = 𝑞𝜋 <-> 𝛿𝑤(𝑠, 𝑎) = 0 for any (𝑠, 𝑎) ∈ 𝑆 𝑥 𝐴. 

So, if we have some distribution 𝐷  over states and actions, MSBE in this case can be 

defined as proxy to estimate quality of 𝑤: 

𝑀𝑆𝐵𝐸𝐷(𝑤) = 𝐸(𝑠,𝑎)~𝐷[𝛿𝑤(𝑠, 𝑎)2] 

If the distribution is online, then we just write 𝑀𝑆𝐵𝐸(∗). If instead of paramet-

rized Q-function, we use value function 𝑣𝑤: 𝑆 → 𝑅 then: 

𝑀𝑆𝐵𝐸𝐷
𝑉(𝑤) = 𝐸𝑠~𝐷[𝛿𝑤(𝑠)2] 

Where 𝐷 is distribution over the states, and 𝛿𝑤(𝑠) = 𝐸𝑎~𝜋(∗|𝑠)[𝛿𝑤(𝑠, 𝑎)].  

Gradient-based value estimation is done through minimizing MSBE by gradient 

optimization. If during timestamp 𝑡 two independent transitions are required, we call it 

double sampling. RAN algorithm iteratively updates 3 values: 

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑞𝑤(𝑆𝑡+1, 𝐴𝑡+1) − 𝑞𝑤(𝑆𝑡 , 𝐴𝑡) 

𝛿𝑡
′ = 𝑅𝑡

′ + 𝛾𝑞𝑤(𝑆𝑡+1
′ , 𝐴𝑡+1

′ ) − 𝑞𝑤(𝑆𝑡 , 𝐴𝑡) 

𝑤 = 𝑤 − 𝛼𝛿𝑡
′∇w𝛿𝑡 

Where 𝑤𝑡 = 𝑤. Apart from that, we also update Gauss-Newton directions. 

MBSE Loss Illness: Condition-number of symmetric square matrix 𝐻 is defined 

as: 

𝐶(𝐻) =

max
𝑥:||𝑥||=1

|𝑥𝑇𝐻𝑥|

min
𝑦:||𝑦||=1

|𝑦𝑇𝐻𝑦|
 

In other words, it is the ratio of largest and lowest singular values. After that we 

define condition number for quadratic function 𝑓(𝑥) = 𝑥𝑇𝐻𝑥.  

𝐶(𝑓) = 𝐶(𝐻) 
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Where 𝐻 is hessian matrix of function 𝑓. We consider linear approximation case, 

and because MSBE is a quadratic function, then it has a condition number as well 

denoted 𝐶. 

Theorem: a) For any Markov decision process and with any policy, the following 

takes place: 

𝐶 ≥  
(1 − 𝛾ℎ)2

4
𝑚𝑖𝑛 (

𝑙2

𝛾2
,

1

(1 − 𝛾)2
) 

b) For any ≥ 1 , there exists a policy and  𝑛 state Markov decision process such 

as: 

𝐶 ≥
𝛾4𝑛2

(1 − 𝛾)2
 

Proof:  Part b is proved in [Zhang, et al., 2020, P. 1611-1619], so we will prove 

only part a. Let’s note that fixed policy gets to Markov process with termination point. 

We consider having a Markov chain with 𝑛 non-terminal states, let 𝑃 be associated 

transition matrix. Let 

𝐴 = (𝐼 − 𝛾𝑃)𝑇(𝐼 − 𝛾𝑃) 

If we take tabular approximation and uniform state distribution 𝐷, we have: 

𝑀𝑆𝐵𝐸𝑉(𝑤) =
𝑤𝑇𝐴𝑤

𝑛
 

We denote largest and smallest eigenvalues of 𝐴 as  𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛. It follows that 

𝐶 =
𝜆

𝜆𝑚𝑖𝑛
  

 

We estimate from above 𝜆𝑚𝑎𝑥 and from below 𝜆𝑚𝑖𝑛. Let’s denote 𝑙𝑖 the expected 

number of steps until termination for state 𝑖. In that case it is obvious that 

𝑙𝑖 = 1 + ∑ 𝑃𝑖𝑗𝑙𝑗

𝑛

𝑗=1

 

Let’s make a vector from these expected numbers and denote as 𝑙 = [𝑙1, … , 𝑙𝑛]𝑇, 

then we can rewrite our expectation formula: 

𝑙 = 1 + 𝑃𝑙 

Where 1 = [1, … ,1]𝑇. From above, we get: 

(1 − 𝛾𝑃)𝑙 = 𝑙 − 𝛾𝑃𝑙 = 𝑙 − 𝛾(𝑙 − 1) = (1 − 𝛾)𝑙 + 𝛾 ∗ 1 

Let 𝑙 =
𝑙1+⋯.+𝑙𝑛

𝑛
 as mean of {𝑙𝑖}𝑖=1

𝑛 . From Cauchy-Schwarz inequality we get: 

||𝑙2||

𝑛
=

1

𝑛
∑ 𝑙𝑖

2 ≥ (
1

𝑛
∑ 𝑙𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

= 𝑙2 

Let’s estimate largest eigenvalue firstly: 
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𝜆𝑚𝑎𝑥 ≥
1

𝑛
𝑡𝑟𝑎𝑐𝑒(𝐴) =

1

𝑛
∑ 𝐴𝑖𝑖

𝑛

𝑖

=
1

𝑛
∑ (𝐼𝑗𝑖 − 𝛾𝑃𝑗𝑖)

2
=

1

𝑛

𝑖=𝑛,𝑗=𝑛

𝑖=1,𝑗=1 

∑ ((1 − 𝛾𝑃𝑖𝑖)2 + ∑ 𝛾2𝑃𝑗𝑖
2

𝑗≠𝑖

)

𝑛

𝑖=1

≥
1

𝑛
∑(1 − 𝛾𝑃𝑖𝑖)2

𝑛

𝑖=1

≥ (
1

𝑛
∑ 1 = 𝛾𝑃𝑖𝑖

𝑛

𝑖=1

)

2

= (1 −
𝛾

𝑛
∑ 𝑃𝑖𝑖

𝑛

𝑖=𝑞

)

2

= (1 − 𝛾ℎ)2 

For the smallest one we get: 

𝜆𝑚𝑖𝑛 ≤
𝑙𝑇𝐴𝑙

||𝑙||
2 =

||(𝐼 − 𝛾𝑃)𝑙||
2

||𝑙||
2 =

||(1 − 𝑔𝑎𝑚𝑚𝑎 )𝑙 + 𝛾 ∗ 1||
2

||𝑙|2

=
(𝐼 − 𝛾)2||𝑙||2 + 2𝛾(1 − 𝛾)1𝑇𝑙 + 𝛾2𝑛

||𝑙||
2

= (𝐼 − 𝛾)2 +
2𝛾(1 − 𝛾)𝑛𝑙 + 𝛾2𝑛

||𝑙||
2 ≤ (𝐼 − 𝛾)2 +

2𝛾(1 − 𝛾)𝑙 + 𝛾2

𝑙2

= (𝐼 − 𝛾 +
𝛾

𝑙
)

2

 

So, connecting these 2 estimations together we can write down: 

𝐶 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
≥

(1 − 𝛾ℎ)2

(1 − 𝛾 + 𝛾 𝑙⁄ )2
≥

(1 − 𝛾ℎ)2

2(1 − 𝛾)2 + 2𝛾2 𝑙2⁄
≥

(1 − 𝛾ℎ)2

4
min (

𝑙2

𝛾2
,

1

(1 − 𝛾)2
) 

Which completes the proof of point a. 

This theorem implies slow convergence of MSE gradient optimization methods. 

For example, if we set the following parameters for our MDP  𝛾 = 0.99, 𝑙𝑚𝑖𝑛 =

100, 𝑝 = 0.1, then from point 𝑎, we get that 𝐶 > 2000.  

Double Sampling Freedom:  In RAN algorithm, we need double sampling, but 

such a requirement is possible only in theoretically created environments, because 2 

sequential states are very likely dependent [Dabney, et al., 2014, 3-6]. To solve this 

issue, we use parametrization for 2 sequential samples, so the only difference compared 

RAN is one more additional parameter added and a separate update of that parameter. 

Outlier Sampling: RAN also has a problem with rare samples with big gradients 

and it can’t be clipped [Zhang, et al., 2019, 3-9] because of the information contained in 

them. Let’s consider the idea of how we can do that. Let’s note a task of minimization of 

𝑓1 + ⋯ + 𝑓𝑛 for smooth functions {𝑓𝑖}𝑖
𝑛 and 𝑓𝑗 -s gradient is 𝑘 times larger than the gra-

dient of norms of other functions for some 𝑘 > 1 . Instead of optimizing sum of 



 
 
 
 
 
 
ALTERNATIVE quarterly academic journal 

60 

 

functions we optimize 
𝑓1

𝑘
+ ⋯ +

𝑓1

𝑘
+ 𝑓2 + ⋯ + 𝑓𝑛 random based. The first updates are 

getting rid of outliers, while latter ones are equivalent to updating initial sum. Let’s set 

outlier sampling probability as 𝜎 (will be used later as a hyperparameter). 

RANS: Final algorithm is a combination of RAN, double sampling freedom, and 

outlier splitting. To update Gauss-Newton directions more effectively, we insert adaptive 

step-size 𝛽 using the algorithm from [Kochenderfer, et al., 2019, 95-99]. Let’s denote a 

trace vector 𝑣𝑡 of (∇𝛿𝑡)2. Here is the update rule: 

𝑣𝑡 = 𝜆′𝑣𝑡−1 + (1 − 𝜆′)(∇𝛿𝑡)2 

 

We set  𝜂 ∈ (0,1) and 

𝜖𝑡 =<
1

√𝑣𝑡

∗ ∇𝛿𝑡 , ∇𝛿𝑡 > 

Where ∗ is entrywise product, <> - inner product. After we compute trace 𝜙 and 

𝑘 the following way: 𝜙𝑡+1 = 𝜆′𝜙𝑡 + (1 − 𝜆′)𝜖𝑡 and 𝑘 = ⌊𝜖𝑡 𝜌𝜙𝑡⁄ ⌋ + 1. Step size is set:   

𝛽𝑡 =
𝜂

𝜌𝜙𝑡   

1

√𝑣𝑡

 

Let’s show that RANS prevents problems that RAN has. Let actions space consist 

of one element 𝐴 = {𝑎}. When we approximate functions, 2 successive states 

({𝑆𝑡, 𝑆𝑡+1}) often doesn’t differ a lot from the representation standpoint, consequently 

their gradients of Q function are close to each other, which implies  

Δ𝛿𝑡 = 𝛾Δ𝑞𝑤(𝑆𝑡+1, 𝑎) − Δ𝑞𝑤(𝑆𝑡, 𝑎)~0 

The problem here is not in the fact that Δ𝛿𝑡 is small. If it was small for all the 

consecutive states, then we could easily solve the problem by using a step-size scheduler 

and constantly increasing it (that action should happen slowly as a smooth function). The 

problem appears when the next state is terminal and in that case that state will be far 

from its previous state. Despite the fact that mostly such scenarios happen with a low 

probability, we risk to lose too much information. The updating rule in RAN has a 

momentum and correction terms (corrects direction to Gauss-Newton). In an outlier 

case, correction term gets too large, which means that direction change to Gauss-Newton 

happens much faster than it should have been. As a result, tracking that direction 

becomes challenging. As long as, we have defined updating 𝛽𝑡, we have 

1

𝑘
< 𝛽𝑡 ∗ Δ𝛿𝑡 , Δ𝛿𝑡 > =

1

𝑘

𝜂

𝜌𝜙𝑡
<

1

√𝑣𝑡

∗ Δ𝛿𝑡 , Δ𝛿𝑡 > ≤
𝜌𝜙𝑡

𝜖𝑡

𝜂

𝜌𝜙𝑡
<

1

√𝑣𝑡

∗ Δ𝛿𝑡 , Δ𝛿𝑡 > = 𝜂  

From there we get that 

|
1

𝑘
< 𝛽𝑡 ∗ (Δ𝛿𝑡

𝑇𝑚)Δ𝛿𝑡, Δ𝛿𝑡 >| ≤ 𝜂|Δ𝛿𝑡
𝑇𝑚| 

Consequently, outlier sampling problem doesn’t occur in RANS. 
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Figure 1. Performance of models on economical decision-making task CartPole, where 

Q-values are learnt 

Literature review MSBE illness and the challenges that appeared with it were a 

complex challenge to solve. In the work [Wang, et al., 2021, 3-6] poor conditions related 

to MSBE were examined in detail. Their research was concentrated on Markov chains 

with a fixed length. In their work, it was found out that condition-number of chains 

increases quadratically to the length of that chain. Second important finding was that 

there is one more dependence and it is reverse quadratic related to 𝛾. These findings pro-

vide a clear understanding of current problems with the corner cases. 

Gradient-based value estimation methods are powerful, but they lack computation-

nal efficiency. For details, one can refer to Baird’s article, where it is revealed that each 

update of RG method is an update of 2 components. First one is called TD component 

and is responsible for keeping a right direction during the optimization and wrong 

direction component. Here the main idea was to reduce second components’ influence. 

The experiments have shown that the strategy clearly works on early epochs of training 

but after gaining a certain momentum, it is not effective at all. 

The open question on how to get an adequate gradient value estimation had other 

alternatives proposed. For example, Gauss-Newton method was in [Gottwald et al., 

2022, 1-5]. This development wouldn’t have been done if Newton’s method wasn’t stu-

died in [Sun, et al., 2015, 3-7], where authors discussed minimization problem of MSBE 

and solving it through Newton method. 

Natural gradient-based methods for value estimations were presented in [Kakade, 

2001, 1-3], where the author proposed a method to solve basic problems without comp-

lex data. Along with them a similar architecture to RAN was proposed. The model was 

similar from the algorithmic perspective to RAN but was 2 times larger than the original 



 
 
 
 
 
 
ALTERNATIVE quarterly academic journal 

62 

 

RAN. In both articles the outlier sampling problem wasn’t considered as a serious one 

and as an implication – wasn’t solved. 

To solve the problem with outliers, there were numerous tries. The most popular 

of them are [Karampatziakis, et al., 2010, 3-6] and [Tian, et al., 2019, 64-76], where step 

scheduling was proposed to decrease the effect of outliers. With outliers, there is a 

higher chance that we got a bigger direction change, so fixing of it will take longer 

rather than without outliers (which means that next state is not terminal and the gradient 

values’ difference is not too big). 

Scientific novelty Compared to previous works related to gradient-based value 

estimations, mostly all the challenges have unpleasant corner cases, which can’t be 

handled through provided methods in real cases. Benchmark solutions like RAN 

effectively give value estimation in theoretical cases, when the data is not noisy and is 

consistent, which in production tasks never happens. That is the main reason why TD is 

still commonly used as an easy alternative to complex gradient-estimation approaches, 

because it behaves well on noisy data. This research shows that not all the complex 

methods have problems with corner cases, it theoretically proves how double and outlier 

sampling can be included in the common value-estimation solution, without making the 

method more complex. The newly provided gradient-based value estimation method – 

RANS gives an alternative to TD, which was one and only baseline for noisy and 

inconsistent data. It works faster than TD and convergence happens smoother.  

Not only as a new method but also as a new way of considering both gradient-

value and value estimations, RANS provides a way to improve already existing 

algorithms that work on unbiased, less noisy data. Overall, RANS is not only a new 

gradient-value estimation algorithm, but a new way of generalization of solutions with 

outlier sampling cases. 

Analysis After analyzing previously developed methods and showing how RANS 

is better compared to its competitors, we will experimentally show the results that we 

have proven above. As baseline comparison methods we are going to take TD and RG. 

RG is not able to handle outlier sampling problem but provides good results otherwise. 

TD is faster, with worse quality but handles outlier sampling.   

RANS has the following tuple of hyperparameters < 𝛼, 𝜂, 𝜌, 𝜆, 𝜆′, 𝜎 >. We set for 

experiment the following values as default without effecting performance: 𝜂 = 0.2, 

𝜌 = 1.2, 𝜆 = 0.999,  
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Figure 2. Performance of models on economical decision-making task CartPole, where 

average of expected Q-values are learnt 

𝜆′ = 0.9999, 𝜎 = 0.02. So, the only hyperparameter to optimize is 𝛼 like TD and 

RG algorithms. Computational complexity in one iteration in the worst case is 2 times 

more than TD and RG. 

Next step is formally defining the environment. Here, we are going to use a finite 

economic game “CartPole”, which has the same naming as the balance game. The game 

itself can be considered as a benchmark to test the quality of RL-based models, especial-

ly in cases where the algorithm is not complex and doesn’t need a lot of data to feed. In 

finite economy case, we have 2 types of states – stable and unstable. There are 2 types of 

instabilities, called negative and positive. The distinction between these two from task’s 

goal perspective doesn’t change, but for the understanding, we need to mention that 

there is a big difference on how economics can become unstable and based on type 

scores are different. 

The player has a finite set of actions. There are three choices that in each state can 

be taken. First action pushes economy to the negative side of instability second action 

pushes the economy to positive side of it. Third action is more passive than previous 2 

and it is designed to be more inactive and mostly causes not a dramatic move of 

economy stability score to neither one nor other direction. Fortunately, if the next state is 

terminal, then dramatic move may happen even in case of third type of action. It is 

logical because sometimes doing nothing to your economy can make situations worse or 

better. 

The objective of this environment is not just about reacting to the current policy. It 

is created as a new RL task, where the model should find an optimal policy – sequence 

of actions, which gives the economy stability for some amount of time. If there are state 

changes with a low probability that may cause outlier sampling, this environment fully 
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matches the case to use RANS and make sure that theoretical results have experimental 

confirmation too. 

First experiment is taken on a basic economics task with discrete environment 

[Charpentier, et al., 2020, 29-34]. We remind that the goal is to keep the economy stable 

between negative and positive instability during 𝑘 consecutive steps. The final model is 

a neural network with 128 hidden units and Leaky-ReLU for actions distribution and 

Sigmoid for Q-function distribution. Results can be viewed in figure 1. where we 

compare our algorithm with TD and RG using Adam optimizer.  

For the second experiment we used a multi-layer network with 256 hidden Leaky-

ReLU activations, so we can learn action-values (AV). Actions are being chosen using 

sigmoid distribution on AV. The network for Q function is being trained by three 

algorithms, as the first one: TD, RG and RANS. Basic RANS has an advantage over its 

basic competitors because of adaptive step size updating, and because of that we are 

using TD and RG with Adam optimizer. 

For each of the experiments we performed 200 randomly generated data samples 

with random seeds. We are estimating expected values of Q function, so we took an 

average of 200 environment simulations each 400 steps. The results can be viewed in 

Figure 2, where an average of expected returns on random samples is plotted. 

There is a need to mention separately that once the algorithm achieves a score of 

400 and stabilizes, the following happens. Once the algorithm reaches a certain 

equilibrium it starts to forget actions that were making summary reward higher. The 

absence of failures during some period causes the model to have catastrophic forgetting 

problem. 

To solve of this problem, during the experiment the following strategy was used. 

Recognizing the fact that with specific scenarios that causes random samples, the 

environment won’t be able to pass enough information to the model, which will cause it 

to have abovementioned problem. For that reason, 60 worst average return scenarios are 

dropped off. This helps the algorithm to concentrate on a certain set of challenges, 

preventing the rest from affecting the performance of the model. 

To eliminate catastrophic forgetting at least partly, we used a replay buffer. It 

serves as a memory reserve, where we store previous replay experiences which allows us 

to revisit them later. It is a way to force the model to learn from previous experience 

which allows to overcome catastrophic forgetting. Anyway, to overcome this problem 

fully, we need to use updates through batches, which allows us to replay the algorithm 

with multiple sessions at the same time. 
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Ideal way of excluding catastrophic forgetting in case of big size of configuration 

space we need to increase replay buffer size significantly, because it will ensure more 

extensive range of experiences stored. 

For both experiments there is a specific list of parameters that were used to ensure 

that the model is consistent and generalizable for any randomly generated finite en-

vironments. The choice of parameters is done through Grid Search on a set of parame-

ters with size 2000, running them for small number of randomly generated environ-

ments, and getting the best results from that set. For each of below 3 algorithms the pro-

cess is being repeated and as a result here are the parameters with their values that each 

algorithm uses as an optimal: 

 For TD, sigmoid coefficient 0.01 with Adam optimizer with step-size 0.3 was 

used. 

 For RG, sigmoid coefficient 0.005 with Adam optimizer with step-size 0.3 was 

used. 

 For RANS, sigmoid coefficient 2, 𝛼 = 0.001, and the rest of the parameters were 

set to default. 

Above experiments with set parameters show that RANS overperforms from the 

quality perspective both TD and RG algorithms, and from the speed perspective it is 

better than RG. On the other hand, it is slower than TD because each iteration RANS has 

adaptive step-size updating rule, which isn’t included in TD but on the other hand, 

RANS handles outlier cases with higher accuracy, and the model doesn’t lose its consis-

tence if probability of outlier samplings increases.  

As a further analysis for future works, we haven’t covered off-policy cases, 

showing how RANS work experimentally only on-policy way. Of course, it can be 

easily transferred from on-policy to off-policy applying any importance sampling me-

thod. Also, there is a direction to test this method on an environment, which configure-

tion set’s power is continuous and compare RANS to other baseline algorithms as well 

as applying unbiased gradient estimate instead of biased one. On continuous environ-

ments it would be also interesting to prove alike theoretical results as we did here to 

apply the same methods here and exclude corner cases and make the models for any 

types of environments (consequently, continuous economics problems) stable.  

Conclusion In this article we explained the most common challenges that MSBE’s 

gradient-based value estimations have. The main issue that was identified was the slow 

convergence. We theoretically explained why gradient-based value estimations for 

MSBE currently are slowly converging: double sampling and outlier sampling. Both 

problems cause inconsistency during the estimation process and add noise to it. Because 

of that overall efficiency of method becomes not competitive.  
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To fix that, we considered RAN algorithm, which provides robustness in many 

common cases. After that, we considered solutions for both double and outlier samplings 

and combined them with RAN getting more advanced algorithm called RANS. It inc-

ludes RAN and corner case solutions lowering the noise and inconsistence for both prob-

lematic samplings. Theoretically we proved that RANS is improving overall conver-

gence and solved problems of double sampling and outlier sampling. 

Further taken experiments with RANS, particularly on an economical problem 

with a finite number of states and 3 decisions’ environment has shown that it improved 

previous baseline algorithms like RG and TD. Compared to TD, RANS has shown com-

petitive results, showing a potential to be used in certain scenarios, where the generated 

samples include a lot of noise. 

This research provides a new way of looking at challenges in gradient-based 

estimations, where a smart combination of corner cases and ordinary solutions can give a 

significant enhancements and RANS as a perfect example, provides promising results 

for the future research and applications in finite decision-making environments. 

 

References 

1. Sutton R.S., Barto A.G., Reinforcement learning: An introduction, MIT Press, P. 1-

13, 2018. 

2. Bhatnagar S., Sutton R.S., Ghavamzadeh M., Lee M., Natural actor-critic 

algorithms, Automatica, P. 3-5, 2009. 

3. Van Seijen H., Van Hasselt H., Whiteson S., Wiering M., A theoretical and 

empirical analysis of expected Sarsa, IEEE Symposium on Adaptive Dynamic 

Programming and Reinforcement Learning, P. 177-184, 2009.  

4. Van Hasselt H., Guez A., Silver D., Deep Reinforcement Learning with Double Q-

learning, Association for the Advancement of Artificial Intelligence, P. 2-5, 2015. 

5. Baird L., Residual algorithms: Reinforcement learning with function 

approximation., Proceedings of the International Conference on Machine Learning, P. 

30-37, 1995. 

6. Dai B., He N., Pan Y., Boots B., Song L., Learning from conditional distributions 

via dual embeddings, In Proceedings of the International Conference on Artificial 

Intelligence and Statistics, P. 1458-1467, 2017. 

7. Ghiassian S., Patterson A., Garg S., Gupta D., White A., White M., Gradient 

temporal-difference learning with regularized corrections, In Proceedings of the 

International Conference on Machine Learning, P. 3524-3534, 2020. 

8. Zhang S., Boehmer W., Whiteson S., Deep residual reinforcement learning, 

Proceedings of the 19
th
 International Conference on Autonomous Agents and Multiagent 

systems, P. 1611-1619, 2020. 

9. Dabney W., Thomas P., Natural temporal difference learning, Proceedings of the 

AAAI Conference on Artificial Intelligence, V. 28, P. 3-6, 2014. 



 
 
 
 
 
 
ALTERNATIVE quarterly academic journal 

67 

 

10. Zhang J, He T., Sra S., Jadbabaie A., why gradient clipping accelerates training: A 

theoretical justification for adaptivity, arXiv preprint, P. 3-9, 2019. 

11. Kochenderfer M. J., Wheeler T. A., Algorithms for optimization, MIT Press, P. 95-

99, 2019.  

12. Wang. Z.T., Ueda M., A convergent and efficient deep Q network algorithm, arXiv 

preprint, P. 3-6, 2021.  

13. Gottwald M., Shen H., On the compatibility of multistep lookahead and hessian 

approximation for neural residual gradient. In Proceedings of the Multi-disciplinary 

Conference on Reinforcement Learning and Decision Making, P. 1-5, 2022. 

14. Sun W., Bagnell J. A., Online bellman residual algorithms with predictive error 

guarantees, P. 3-7, 2015. 

15. Kakade S. M., A natural policy gradient, In Advances in Neural Information 

Processing Systems, volume 14, P. 1-3, 2001. 

16. Karampatziakis N., Langford J., Online importance weight aware updates, arXiv 

preprint, P. 3-6, 2010. 

17. Tian T., Sutton R., Extending sliding-step importance weighting from supervised 

learning to reinforcement learning, In Proceedings of the International Joint Conference 

on Artificial Intelligence, P.  64-76, Springer, 2019. 

18. Charpentier A., Romuald E., Remlinger C., Reinforcement Learning in Economics 

and Finance, arXiv preprint, P. 29-34, 2020. 

 

 

Radoslav NEYCHEV, Arman STEPANYAN 

Efficient gradient-based estimation in finite economics’ problems 
Key words: reinforcement learning, finite economics problems, Q-learning, gradient descent, 

gradient-based value estimation, Bellman equation, loss function, temporal difference, outlier-

splitting method, Gauss-Newton method 
 

Gradient-based methods (GBMs) for estimating values have stability properties, but the 

temporal difference (TD) and its modifications’ learning methods are much faster in re-

inforcement learning (RL). We prove a theorem stating the cause of GBMs being slow 

and show that the mean square of Bellman error (MSBE) is a not appropriate loss func-

tion if its second derivative matrix has a significant determinant. To resolve the problem 

with MSBE on GBMs we propose residual approximate Gauss-Newton with an outlier-

splitting method (RANS). This method adds outlier-spitting on gradient methods and 

learning adapter ideas to residual gradient methods making them more stable from the 

estimation perspective. We show that it is faster than its residual competitors having the 

same computation time and competing with TD on the baseline problem of economics 

(CartPole) in RL that we tested. Further analysis and future contributions are considered 

to make the result of these methods better on any types of economics, which can be built 

as a finite set of state-action pairs. After proving that claim, GBMs can be used as a 

baseline in any types of RL-based problems including finite economics problems. 

 

 

 

 


