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Introduction. Sports gambling industry has always been an interesting research 

area for both scientists and hobbyists who are trying to beat the bookmakers. While 

several strategies are claimed to beat the bookmakers using arbitrage or expert 

predictions, long term returns of those strategies are not consistent. Very interesting 

approach is used in [Kaunitz, Zhong and Kreiner, 2017] which does not aim to 

outperform the forecasting models of the bookmakers but uses the odds throughout the 

betting market to find mispriced odds. It is shown that the inefficiency of the betting 

market can be exploited to consistently beat the bookmakers. Some relatively accurate 

models to predict outcomes of football matches are proposed in [Melnykov, 2013] and 

[Dyte and Clarke, 2000, pp. 993–998].  

This particular project aims to develop a web application which can give betting 

predictions on the upcoming matches of the major European leagues. We do not aim to 

outperform bookmakers in their predictions, rather we aim to create a simple predictor, 

test and deploy it. Firstly, we collect the data of matches from the past seasons. Than we 

propose a learning model based on the indicators which we find relevant in predicting 

the outcome of a certain match. After estimating the performance of the proposed model 

we implement Monte Carlo simulations to understand the profitability of the predictions. 

Finally, we deploy the program in the form of simple web application which provides 

predictions on the upcoming matches of top 5 European leagues. 

Methodology and literature review. Since we aim to not only develop a predictive 

model but also simulate bets, we also need the closing odds on the outcomes that is 1X2 

odds. For that purpose, we crawled the sports statistics web page [Odds Portal, 2019], 

which contains both historical data and closing odds on the outcomes of the matches. 

The sample of the crawled data is shown in Table 1 below. We have crawled past 

matches starting from season 2010 to 2018 for the top 5 European leagues, namely, La 

Liga (Spain), Bundesliga (Germany), Legue-1 (France), Serie-A (Italy) and Premier 

League (England).  

In Table 1 “coef1”, “coefX” and “coef2” show the closing odds corresponding to 

win of first team, draw and win of the second team. The variable “matchDate” will be 

used to figure out the evolution of the club rating during the season. 
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Table 1. Sample of 10 scrapped entries 

Now we present the transformation of the raw data to be able to create a predictive 

model. As mentioned above we aim to predict the outcome of a given match. First of all, 

we need to figure out what are our predictor variables. For our model we chose 

 ratings of the competing teams 

 head to head statistics 

 home advantage 

As for the ratings of the clubs we chose the Elo rating system which is quite 

popular choice in creating the ratings of competing sides in different kinds of sports. 

Ratings of the competing clubs and home advantage are more or less obvious indicators 

which affect the outcome of a football match. Let us introduce the head to head statistics 

indicator which aims to estimate the advantage between two particular clubs based on 

their past games. Why this indicator is important? Take for example Barcelona and Real 

Sociedad. Starting from season 2013 until 2016, Sociedad which has low rating as 

compared to Barcelona, played incredibly well against the latter (4 wins, 4 losses and 2 

draws). We see that there is a total equality during this particular period of time. 

However, Barcelona does not demonstrate this kind of head to head statistics against all 

the teams with ratings similar to that of Real Sociedad. It means that this statistic 

describes the advantage between two particular competing sides. We calculate head to 

head statistics indicator between team 1 and team 2 matches with the following formula: 

𝐻2𝐻𝑡1𝑡2 =
1

𝑁
∑(𝑂𝑖

𝑡1𝑡2 − 𝑂𝑖
𝑡2𝑡1)

𝑁

𝑖

 

where 𝑂𝑖
𝑡1𝑡2 is equal to 1 if on the 𝑖𝑡ℎ match - 𝑡1 𝑣𝑠 𝑡2 the winner was 𝑡1, -1 if 

the winner was 𝑡2 and 0 if the match was ended with draw. By this definition of head to 

head statistics 1 and −1 mean absolute advantage of either home or away team and 0 

would mean an absolute equality in past matches. It is evident that the head to head 

statistics lies between −1 and 1. Now that we have cleaned the data and figured out our 

predictor variables we create the predictive model. First what we have tried is Artificial 
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Neural Networks. So as we can see from Table 2, we have four predictor variables - 

𝐸𝑙𝑜1, 𝐸𝑙𝑜2, 𝐻2𝐻 and 𝐻𝑜𝑚𝑒 𝑇𝑒𝑎𝑚. To build the NN we used Machine Learning library 

Keras. Because, we have only 4 predictor variables our network is rather simple - it is a 

NN with 3 Dense layers. As the outcome of the match is a categorical response variable, 

in the last layer we should use the “softmax” activation function which return 

probabilities corresponding to every outcome category. 

 

Table 2. Sample data after processing and adding the predictor variables 

 
Figure 1. Confusion matrix of Premier League predictions 

For building the model we take the matches of past 9 seasons of top 5 European 

leagues starting from 2010 until 2018. We split the data into train, test and validation 

sets. 20 percent of the data we took as a testing data. The rest of the data was split to 

training and validation sets by the proportion 80: 20. Let us look at the model 

performance for Premier league. As we can see from Fig. 1, the model predicts very few 

draws. This is rather expected because the probability of the draw before the match is the 

least, that is bookmakers always favor the winning odd of one or the other side and not 

the draw. From the other hand, it is good to have a model which predicts draws since the 

odds for draws are always higher as those are considered the least probable outcomes 
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pre-match. For Premier League predictor we have got an accuracy of nearly 60%. From 

confusion matrix we can also calculate the number of matches on which the predictor 

totally failed. For 39 matches the predicted value was ’team1’ but the actual value was 

“team2” and for 21 matches the predicted value was ’team2’ but the actual outcome was 

“team1”. The predictor totally fails on 19% of the time, and the rest of the predictions 

fail only by one step. Completing similar analysis on the other 4 leagues we can give 

approximate estimation on leagues which are more or less predictable than the others. 

 
Figure 2. Predictability by top 5 national leagues 

From Fig. 2 we can see that the least predictable national championship is the 

Premier League. The matches of La Liga, Bundesliga and French league are almost 

equally predictable. Finally, the most predictable of all with prediction accuracy of 

nearly 65% is Italian championship. 

Scientific novelty. The scientific novelty of this article is that a model is proposed 

here, which predicts the probability of winning the matches of the main European 

league. Using the predicted odds, we present betting strategies, analyze their profi-

tability. Article also assesses the predictability of the top 5 European football tourna-

ments. Finally, using the results of the predictions, a web application was created, which 

gives predictions about the upcoming football matches of the top 5 European leagues.  

Analysis. From Fig. 2 we have the prediction accuracies for top 5 European league 

matches. The problem is how to figure out, if it is bad or good. Considering the fact that 

our model does not tend to predict draws, it is quite reasonable result. However, from the 

perspective of profitability analysis accuracies do not illustrate anything. This is the 

point, where we need to use betting simulations. For example, we can take 10 matches 

randomly from the test set, predict their outcomes, simulate 1 dollar bet on the 

coefficient that corresponds to the predicted outcome and if it is correct get a profit equal 

to that particular coefficient minus our bet of 1 dollar. However, the profit, estimated in 
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this way, is completely ra//////ndom and if let’s say in one set of games we achieve a 6 

dollars of profit from 10 matches, for next set of 10 matches we can lose 10. The reason 

behind this is the ultimate randomness of the outcome of a match. Moreover, different 

profit values are the results of different realizations of outcomes of 10 observed matches.  

Table 3. Predictions of the upcoming matches of Serie-A 

So, to avoid this kind of delusions and to be more general we conduct random 

simulations of 10 matches N times. We chose 10 matches in similarity to 10 matches 

that are played during every match week. The key points of the algorithm of Monte-

Carlo simulations are introduced below. For every round of simulation generate a 

uniformly distributed random number r. If r is less than the away win probability of the 

home team we consider the outcome of the match as away team win. If r is less than the 

away win probability plus the draw probability the outcome is considered to be a draw. 

Otherwise, it is considered as home team win. This technique comes from probability 

theory and is quite natural approach in simulating random events with some probabilities 

(see [Wang, 2012]). After having the outcomes of the simulated matches, we simply 

compare them to the outcomes that were predicted by our model. In case of correct 

predictions, we add a profit equal to value of corresponding coefficient minus our 1-

dollar bet. Using this algorithm we conducted 1000 simulations of 10 matches chosen 

from the test set. For every round of simulation, we obtained a profit that corresponds to 

one of 1000 realizations of the simulation. So, to obtain the long term profit estimate we 

need to average the profits over all of the realizations. For arbitrarily chosen 10 matches 

we obtained profit estimate equal to $0.51. However, this technique is limited to the 

specific domain of the training data. Here, we must note that even if we had a model 

which is 100% accurate based on past data that does not in any way mean that it will 

succeed on unseen data. So, beating the bookmakers is something that is nearly 

impossible task to achieve. We chose to create simple web page which gives users the 

opportunity to get predictions on future matches of their chosen league. When user 
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selects a league and a date, the application returns the list of matches that will take place 

in an interval of 7 days after the specified date with the predictions on the outcomes of 

those matches. We used Java framework - Spring MVC to serve as a back-end of our 

application. The predictions on future matches are done beforehand after match week. 

Conclusion. We proposed a simple predictive model for the matches of top 5 

European leagues. The predictor variables were Elo ratings, home advantage and head to 

head statistics. It turns out that by our model the less predictable league is English 

Premier League and the most predictable is Italian Serie-A. We also deployed our 

predictor by creating a simple web application which gives users the opportunity to get 

predictions on the upcoming matches. 

Disclaimer: Authors of this paper are not in any way responsible for the monetary 

losses caused by following any ideas and procedures included in this project. Bet 

responsibly. 
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Beating the bookmakers is something that is nearly impossible task to achieve. However, 

in this paper we propose a model to predict winning odds of major European league 

matches. Particularly, the predictions were done on top 5 (England, Spain, Italy, France 

and Germany) football league matches. To create an accurate predictor, we used 

Machine Learning to build an Artificial Neural Networks. Using the predicted 

probabilities, we introduce betting strategies and analyze their profitability using Monte 

Carlo simulations. To create more precise model, we set predictor variables such as 

ratings of the competing teams, head to head statistics and home advantage. We also 

estimate the predictability of top 5 European football competitions. The analysis is done 

based on historical data of matches and the closing odds on outcomes of matches. 

Finally, we deploy the results of the predictions by creating a web application which 

gives the predictions on the upcoming football matches of the top 5 European leagues. 


