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Economic significance. Neural networks are one of a variety of machine learning
models which are beginning to be widely used in economic forecasting applications. De-
spite this, there is relatively little understanding of the conditions in which neural net-
works provide accurate forecasts, the uncertainty bounds which can be put on such fore-
casts, and the most suitable network types and parameters for forecasting in the relative-
ly small-sample settings encountered within economics. There are mixed comparison re-
sults of forecasting performance between neural networks and other models. The reasons
may be the difference of data, forecasting horizons, types of neural network models and
so on. Prediction performance of neural networks can be improved by being integrated
with other technologies.

Introduction. As a powerful technique to handle complicated issues across a wide
range of application sectors, deep neural networks (DNNs) had recognized as a domi-
nant strategy in several fields, including autonomous driving, health care, robotics, pro-
cessing of natural language, and image recognition [1]. The expectations placed on DNN
prediction applications can vary dramatically from one another. For neural networks, we
introduce a Modular Accelerator Generator (MAG) to tackle these difficulties. Neural
MAG receives the following information in addition: 1) a target application require-
ments composed of a range of neural networks; 2) physical limitations, such as a surface
budget or a time objective; and 3) a design purpose in terms of production and energy
consumption, among other variables. A valid mapper for executing DNN prediction on a
specific system is produced as an export by MAG and synthesizable RTL in an ASIC for
DNN acceleration [2]. There are three parts to the neural MAG software package: the
MAG Designer, the MAG Mapper, and the MAG Tuner [3]. The Neural MAG architec-
ture comprises a highly flexible architecture framework with many design-time options,
which allows the production of DNN accelerators tailored to individual workloads and
application scenarios. The MAG mapper manages multiple neural networks onto the
created electronics and allows for refining mapping algorithms at run-time, which is ve-
ry useful. For a quick exploration of the design space, the MAG tuner takes advantage of
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Function optimization, a well-known methodology for searching multifaceted areas.
Through RTL High-Level Synthesizer (HLS), power analysis, logic fabrication, several
potential accelerator executions may be quickly prototyped, allowing for the most effi-
cient design model validation for the required DNN accuracy productivity and efficiency
targets. This paper offers neural MAG, a DNN induction accelerator generator built
around a highly flexible Processing Element (PE) conceptual structure written in C++
and synthesizable by C++ and HLS tools.

Literature Review. Many research projects have been undertaken to enhance the
performance and reliability of DNN inference acceleration systems. In terms of accelera-
tor layout, early current studies investigated a variety of accelerator designs with varying
memory topologies, dataflow patterns, and connectivity networks [4]. These designs use
a variety of reuse patterns to optimize the design for a variety of target workloads. MAG
tackles the industrial automation aspects regarding specialist computational intelligence
accelerators in contrast to earlier attempts that described particular design cases. Neural
MAG allows for systematic examination of design space and founder of accelerator con-
cept and run-time characteristics, including alternative segments and sub-parameters, da-
ta flows, patterning schemes, and quantization strategies [5]. Other researchers have ad-
vocated using FPGAs and the accompanying intelligent technologies to accelerate deep
neural networks in previous research initiatives. Most of these efforts concentrate on
speeding a distinct neural network and on developing the most efficient FPGA resource
best practices. Also of note is that they offer a fixed flow of information and do not con-
sider run-time transfer schemes for performing various neural networks on different
hardware configurations. It is targeted at ASIC multiprocessors and supports the struc-
ture of various design-time and run-time specifications, including equipment variables,
dataflows, and designs, to enhance the prototype across a wide variety of neural net-
works [6].

Methodology: Data Sources. This study pruned allocated capacity by placing two
user-determined criteria, emphasizing either energy consumption or effectiveness. From
the first limitation, we have the recycling factor, which sets the modest amount of tem-
porally reuse may achieve that for various data kinds. The reuse factor can be used to
prune small tile sizes that are inefficient to improve energy due to a lack of buffer reuse.
This property is the penultimate limitation since it defines the frequency of PEs actively
used in the system. The usage of more PEs results in a bigger PE tile size, which usually
results in greater energy efficiency inside the PE. However, research shows that PE may
diminish the overall performance if only a few PEs are used. A higher capacity leads to
enhanced software quality, but it may not be the most energy-efficient option. ResNet-50
projected to MAG produced technology with a WS dataflow, maps the using various
pruning algorithms and different clipping heuristics. As illustrated in the image, using a
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minimal recycle factor in conjunction with utilization limits results in a decrease in the
size of the mapped space of about 90 per cent.

Research Design. The findings of the design space exploration are depicted in
Table 1. A compromise between energy consumption (y-axis) and effectiveness per unit
area (x-axis) is displayed in the histogram; the bottom corner portion of the graph
represents the ideal tradeoff. There are four broad categories of MAG designs presented
here, including one that corresponds to a specific pairing with weight and stimulation
precision and recalls in the design. Each location on the graph represents the measure-
ments for a composite design occurrence chosen from a set of variables possibilities lis-
ted in Table 1. Each point represents a different design occurrence. Every classification
is optimized using three distinct neural networks and pruning the mapped space aggres-
sively to get the most feasible mapping. Lastly, we present the findings of a MAG ins-
tance set up to be identical to NVDLA, a transparent DNN accelerator that is utilized in
comercialized SoCs, to provide a baseline for comparability. NVDLA makes use of WS
dataflow, which has precisions of 8 bits for both weighting and actuation. Two separate
frequency settings are included in the parametric sweeps for this masterpiece.

Statistical Analysis. Our evaluation case study involves designing a DNN inter-
prettation accelerator for object recognition utilizing three distinct computational mo-
dels, DriveNet and ResNet-50, and the ImageNet groups of data to assess MAG's per-
formance. Using these machine learning, we investigate the constraints between energy
consumption and efficacy in each of their fully connected layers, as well as a handful of
MAG-generated reasoning accelerator configurations in a 14nm FIinFET device di-
mensions for these neural systems. The product designs and characteristics used in the
examination are listed in Table 1.

Table 1. Experimental Setup

Benchmarks

Networks | AlexNet. ResNet-50, DrivelNet
Dataset | ImageNet

Design Tools

HLS Compiler Mentor Graphics Catapult HLLS
WVerilog simulator Synopsys VCS
Logic synthesis Synopsys Design Compiler Graphical
Place and Route Synopsys ICC2
Power Analysis Synopsys PT-PX
Design Space
Dataflows WS, OS. WS-LOS, OS-LWS
WVectorSize/NLanes 4, 8, 16
Weight/Activation precision 4 bits, 8 bits
Accumulation precision 16 bits. 20 bits, 24 bits
Weight Collector Size 8B - 2ZKB
Accumulation Collector Size BB - 384B
Input Buffer Size ZKB. 8KB. 1cKB
Weight Buffer Size 4KB - 128KB
Accumulation Buffer Size 1IKB - 6KB
Global Buffer Size 64K B
Target Frequencies 500 MH=z, 1 GH=z
Supply Voltage 0.6V
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Results and Discussion. The figures below show results for this research design:
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Figure 1. Effect of Parameters on Energy Efficiency

Figure 1 describes the correlation between the energy consumption of ResNet-50
and the precision, vector size and dataflow parameters. Appropriate Dataflow is defined
as follows: Given the findings in Figure 1, we would like to integrate and vast important
implications for dataflow selection. For starters, we discovered that the OS-LWS work-
flow provides the highest level of energy effectiveness in practically all cases. The bene-
fits are most noticeable when 8-bit accuracy and a big VectorSize are used together.
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Figure 2. Neural MAG PE Energy Breakdown

Energy efficiency (fl/op)

As illustrated in Figure 2, the weighted reserve and the accretion buffer account
for a large portion of the total energy usage in these arrangements. OS-LWS can produce
lower emissions than the WS and OS dataflows by lowering the number of accesses to
some of these stores. WS-LOS dataflows spend significantly more energy than standard
dataflows. This trend is revealed in another insight: the unexpected increase in energy
usage. Consider the mapping that the neural MAG mapper selected to understand this
effect better. The mapper employed the C and K measurements of the convolution kernel

29



U3LLLSIULL Ghunwlywl hwlnbu

sequence to map to the PE's VectorSize and NLanes characteristics, which we obtained
from the convolution loop-nest. WS-LOS also utilizes the C dimension for the objective
of temporal reuse within collectors. For Resnet-50 layer upon layer with reduced C
measurements as a function, WS-LOS accomplishes little reuse yet incurs a significant
energy cost due to additional detectors. OS-LWS, on the other hand, capitalizes on. In
the collectibles, temporal recovery along the Q dimension can be achieved, resulting in
improved recycling and waste reduction overall. Aside from that, one of the Vector
MAC elements' supplies remains static throughout the OS-LWS information flow,
resulting in decreased noises and improved energy consumption. According to a third
perception, for configurations with 4-bit accuracy and smaller vector sizes, the OS
dataflow yields somewhat significant environmental benefits than the OS-LWS, even
though a greater proportion of the energy is consumed by stacking buffers.

Increase in vector size: Except for maybe the OS dataflow, growing the vector size
results in the decrease in energy usage due to greater retransmission of weighted sum for
all other ultimately increases. For the operating system data flow, the involvement of
abundance barrier vitality is trivial, and the stepwise improvement spectrum utilization
from a significantly bigger vector size is negligible. In contrast, other overheads asso-
ciated with a greater vector size, such as broader feedback flashbacks and catalogues, in-
crease actual energy consumption.
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Figure 3. Accumulation Sensitivity

Collection collector depth: In the OS-LWS dataflow, Figure 3 illustrates the im-
pact of raising the consolidation accumulator intricacy for diverse setups. When Vx Ay
Wz is represented as a design, the vector size equals x, IAPrecision equals y, and
precision is comparable to z. The size of the accumulator collector influences the amount
of weight reclamation that we incorporated into a design. By increasing the capacity of
the aggregation collector, more weight can be recycled, resulting in a reduction in
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electricity consumption by the weight buffer. It does, however, increase the amount of
energy consumed by the aggregate collector registries as a result of this. Because the
mass pad contributes only a tiny percentage of the overall energy in configurations with
reduced weighted accuracy and limited spatial recycle of partial aggregates, stimulating
the growth of the accumulation collector results in an increase in electricity consumption
in these configurations. When weight measurements are more significant, and vector
sizes are more extensive, enhancing the aggregate collector capacity results in a
reduction in electricity depletion leads to improved temporal recycling, as shown in the

graph below.
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Figure 4. MAC Utilization

MAC Use: Figure 4 depicts the relationship between energy and MAC application
for several neural MAG-developed configurations. As illustrated in the figure, neural
MAG configurations can achieve approximately 90 per cent MAC occupancy, resulting
in highly high-performance solutions for ResNet-50 networks. Furthermore, for a par-
ticular application, a diverse range of designs are available that provide varying degrees
of energy consumption, indicating the importance of systematic inventor investigation.
Utilization is valuable criterion for reducing design space since designs with very low
utilization (less than 50 per cent) are poor in terms of quality and power consumption.

Conclusion. This study introduces neural MAG, a DNN information accelerator
producer that accelerates assessment. It is proposed that a highly flexible architectural
template, including configurable dataflows, be used with a mapper to map neural net-
works onto an embedded system. Offered unique dataflows that use reuse across weights
and component sums to achieve high performance. Neural MAG's efficacy in enhancing
the energy speed and reliability is demonstrated by the generation of real-world hard-
ware equivalents, analysis of post-synthesis findings, and measurement of power on
real-world workload. Data indicate that only a neural MAG-developed accelerator can
reach 2.6 TOPS/mm2 and 30 fJ/op with a 14nm FinFET technology, beating jurisdiction
DNN inference accelerators. This result is achieved by modifying the neural network,
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Dataflow, and architecture simultaneously. Therefore, ASIC and RTL combined neural
design yields improvements in energy efficiency.
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Uwpn UUDSUM3UL, Updwt GULUS3UL, Updku HULPEL3UL, Updwi
vuvnhry3Uuul, twyphp SUPrPEL3UL

Lbjpnuwjht dnpnyjwp wpwqugnighsh qupwunnph twhuwgddw unp
dbpnn. Sunbuwghnwlywu b dnnGpwynpdw hwpgbp

Pwbwip pwnbp. funpp tbpnbughti guitighin, dnnnwywp wpwqugnighsh qtpwgpnp

Uotuwwnwuph bwwwnwlu £ ubjpnuwihu gwugbiph dowldwup hunbigpb) ASIC L
RTL upubdwubip: Pwquwphy hGunwgnunulwu uwluwgdtp Gu dbnuwpyybi
DNN wpwqwgdwtu hwdwlwpgbiph wpryniwwybnnigniuu ne hnwwhnigyniup
pwnapwgubiint hwdwp: Wu hnnwdnud wnwownyynid £ ubjpnuwihu dnnni-
pwp wpwguwgnighsh gbubpwwnph (MAG) uwfuwgddwu unp dbGpnn, npp Yw-
nnigqwé Lt ASIC-h &yniu wpngbunpwihtu wwpph (PE) Ywnnigwdph onipg W
uhuptiqynud £ RTL gnpdhpubpny: Wu dbennh Yphpwpdwdp huwpwdnp £ Ypp-
dwuwnb| ubjnpnuwihu gwugbiph dowlydwu dwiuubipp, pwuh np ASIC U RTL uw-
fuwqgdtipt wybh tdwu Gu, 2unphhy pwpdp dYnuniejudp dwpunwpwwbnw-
Ywu nhquwjuh: ASIC L RTL bwjuwagdtpp Ywpnn Gu ogunwagnpdyb) pwpuntiqu-
gpnnh htwn' ubplunnigwsd hwdwlwpgh ypw ubpnuwhu guugbpp pwpunb-
qugnbint hwdwp:
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The primary purpose of this paper is to integrate ASIC and RTL designs in the develop-
ment of neural networks. Even though numerous research studies worked on different
neural network designs using ASIC and RTL, very few researchers have worked on
integrated ASIC-RTL neural network designs. This paper offers neural MAG, a DNN
induction accelerator generator built around a highly flexible Processing Element (PE)
conceptual structure of ASIC and synthesizable by RTL tools. Many research projects
have been undertaken to enhance the performance and reliability of DNN inference
acceleration systems. In terms of accelerator layout, early current studies investigated a
variety of accelerator designs with varying memory topologies, dataflow patterns, and
connectivity networks. However, ASIC stand-alone neural network designs are pretty
expensive. This paper seeks to reduce the cost of constructing neural networks by inte-
grating ASIC and RTL designs. This study concludes that ASIC and RTL designs are
cheaper because they constitute a highly flexible architectural design, including confi-
gurable dataflows, and be used with a mapper to map neural networks onto an embed-
ded system.

Kapo CA®APSAH, Apman 'AJICTSH, Apmen JAHUEJIAH, Apman MAHYKSIH,
Jasung TABPUEJISIH

HoBbl1ii MeTOA MPOEKTUPOBAHUS HEHPOHOBOI0 MOAYJILHOI0 YCKOPUTEIBHOTO
reHepaTopa. JKOHOMHYECKHE U MO/ieJIbHbIE PO0IeMBbl.

Krouesvie cnosa: I'nybokue netiponnvle cemu, I enepamop mooynvHo20 ycKopumels

Henbto manHO# craThu siBisercs naTerpanus mpoektoB ASIC u RTL npu pa3pabotke
HEHUPOHHBIX ceTeil. bbuIo MpeAnpUHATO MHOXKECTBO UCCIEA0BATENBCKUX IPOEKTOB AJIS
MOBBIILIEHHUS TPOU3BOAUTENBHOCTH U HAJAEKHOCTH cucTeM yckopenus BeiBoga DNN. B
3TOM cTaThe mpesyiaraerca HelipoHHbI MAG, reHepaTop HHIYKIIMOHHOTO YCKOPUTENS
DNN, nocTpoeHHBIi Ha 04eHb THOKOH KOHIENITYalbHOM CTPYKTYpE JIeMeHTa 00paboT-
ku ASIC u cunTesnpyemsiii nHCTpyMeHTaMu RTL. Micionp3ys 3TOT MeToA, MOKHO CHU-
3UTh CTOMMOCTD Pa3pabOTKN HEUTPOHHBIX ceTeid, mockonbKy poekTsl ASIC u RTL ne-
LIEBJIE U3-3a OYeHb TMOKOH apxuTekTypHoi KoHCTpyKuuu. [Ipoextsr ASIC u RTL mo-
T'YT HCTIOJIB30BaThCS ¢ KapTorpadoM Jjisi OTOOpaXKeHHs HEWPOHHBIX ceTel BO BCTPOCH-
HOM CHCTEME.
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